Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh
نویسندگان
چکیده
Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.
منابع مشابه
Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells
Whereas chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high-throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated D...
متن کاملNucleolar tethering mediates pairing between the IgH and Myc loci
Gene loci on different chromosomes can preferentially colocalize in the cell nucleus. However, many of the mechanisms mediating this spatial proximity remain to be elucidated. The IgH locus on Chromosome 12 and the Myc locus on Chromosome 15 are a well-studied model for gene colocalization in murine B cells, where the two loci are positioned in close proximity at a higher than expected frequenc...
متن کاملIdentification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt's lymphoma cells.
In murine plasmacytoma and human Burkitt's lymphoma cells, one allele of c-myc is translocated into one of the immunoglobulin loci, resulting in a characteristic pattern of deregulated c-myc transcription. Translocation events between c-myc and the IgH locus segregate c-myc and the IgH intron enhancer to different reciprocal products in all plasmacytomas and in most Burkitt's lymphoma cells, su...
متن کاملMolecular mechanisms of transcriptional control of bcl-2 and c-myc in follicular and transformed lymphoma.
A synergistic interaction of Bcl-2 and c-Myc plays a role in lymphomagenesis in mice and in some patients as well. Progression of follicular lymphoma to a more aggressive lymphoma is seen in the majority of patients, and approximately 10% of the transformed lymphomas have a translocation of c-myc in addition to the translocation of bcl-2 found in the original follicular lymphoma. We investigate...
متن کاملThe IgH 3’ regulatory region and c-myc-induced B-cell lymphomagenesis
Deregulation and mutations of c-myc have been reported in multiple mature B-cell malignancies such as Burkitt lymphoma, myeloma and plasma cell lymphoma. After translocation into the immunoglobulin heavy chain (IgH) locus, c-myc is constitutively expressed under the control of active IgH cis-regulatory enhancers. Those located in the IgH 3' regulatory region (3'RR) are master control elements o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007